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Abstract

In this paper we will describe a representation for spatial relationships which makes explicit their inherent uncertainty.
We will show ways to manipulate them to obtain estimates of relationships and associated uncertainties not explicitly
given, and show how decisions to sense or act can be made a priori based on those estimates. We will show how new
constraint information, usually obtained by measurement, can be used to update the world model of relationships
consistently, and in some situations, optimally. The framework we describe relies only on well-known state estimation
methods.

1 Introduction

Spatial structure is commonly represented at a low
level, in both robotics and computer graphics, as local
coordinate frames embedded in objects and the trans-
formations among them — primarily, translations and
rotations in two or three dimensions. These represen-
tations manifest themselves, for example, in transfor-
mation diagrams [Paul 1981]. The structural informa-
tion is relative in nature; relations must be chained
together to compute those not directly given, as illus-
trated in Figure 1. In the figure the nominal, initial
locations of a beacon and a robot are indicated with
coordinate frames, and are defined with respect to a
fixed reference frame in the room. The actual rela-
tionships are x01 and x02, (with the zero subscript
dropped for relations defined with respect to the ref-
erence frame). After the robot moves, its relation to
the beacon is no longer explicitly described.

Generally, nominal information is all that is given
about the relations. Thus, errors due to measure-
ment, motion (control), or manufacture cause a dispar-
ity between the actual spatial structure and the nomi-
nal structure we expect. Strategies (for navigation, or
automated assembly of industrial parts) that depend
on such complex spatial structures, will fail if they
cannot accommodate the errors. By utilizing knowl-
edge about tolerances and device accuracies, more ro-
bust strategies can be devised, as will be subsequently
shown.

1.1 Compounding and Merging

The spatial structure shown in Figure 1 represents the
actual underlying relationships about which we have
explicit information. Given a method for combining
serial ”chains” of given relationships, we can derive

Figure 1: Robot Navigation: Spatial Structure

the implicit ones. If the explicit relationships are not
known perfectly, errors will compound in a chain of cal-
culations, and be larger than those in any constituent
of the chain.

With perfect information, relationship x21 need not
be measured — it can be computed through the chain
(using x2 and x1). However, because of imperfect
knowledge, the computed value and the measurement
will be different. The difference is resolved by merging
the pieces of information into a description at least as
”accurate” as the most accurate piece, no matter how
the errors are described. If the merging operation does
not do this, there is no point in using it.

The real relationships x1, x2, and x21 are mutually
constrained, and when information about x21 is in-
troduced, the merging operation should improve the



estimates of them all, by amounts proportional to the
magnitudes of their initial relative uncertainties. If the
merging operation is consistent, one updated relation
(vector) can be removed from the loop, as the rela-
tion can always be recomputed (by compounding the
others).

Obviously, a situation may be represented by an
arbitrarily complex graph, making the estimation of
some relationship, given all the available information,
a difficult task.

1.2 Previous Work

Some general methods for incorporating error infor-
mation in robotics applications([Taylor 1976], [Brooks
1982]) rely on using worst-case bounds on the parame-
ters of individual relationships. However, as worst-case
estimates are combined (for example, in the chaining
above) the results can become very conservative, lim-
iting their use in decision making.

A probabilistic interpretation of the errors can be
employed, given some constraints on their size, and
the availability of error models. Smith and Cheese-
man[Smith, 1984] described six-degree-of-freedom re-
lationships by their mean vectors and covariance ma-
trices, and produced first-order formulae for com-
pounding them. These formulae were subsequently
augmented ([Smith, 1985]) with a merging operation
— computation of the conditional mean and covari-
ance — to combine two estimates of the same rela-
tion. A similar scalar operation is performed by the
HILARE mobile robot [Chatila, 1985].

Durrant-Whyte [Durrant-Whyte 1986] takes an ap-
proach to the problem similar to Smith and Cheese-
man, but propagates errors differentially rather than
using the first-order partial derivative matrices of the
transformations. Both are concerned with integrat-
ing information consistently across an explicitly rep-
resented spatial graph. Others [Faugeras 1986],[Bolle
and Cooper, 1986] are exploiting similar ideas for the
optimal integration of noisy geometric data in order to
estimate global parameters (object localization).

This paper (amplified in [Smith 1986]) extends our
previous work by defining a few simple procedures for
representing, manipulating, and making decisions with
uncertain spatial information, in the setting of recur-
sive estimation theory.

1.3 The Example

In Figure 1, the initial locations of a beacon and a mo-
bile robot are given with respect to a fixed landmark.
Our knowledge of these relations, x1 and x2, is impre-
cise, however. In addition, the location of a loading
area (the box) is given very accurately with respect to
the landmark. Thus, the vector labeled x3, has been
omitted.

The robot’s task is to move to the loading area, so
that it’s center is within the box. It can then be loaded.

The robot reasons:

”I know where the loading area is, and approximately
where I am (in the room). Thus, I know approximately
what motion I need to make. Of course, I can’t move
perfectly, but I have an idea what my accuracy is. If I
move, will I likely reach the loader (with the required
accuracy)? If so, then I will move.”

”If not, suppose that I try to sense the beacon. My
map shows its approximate location in the room; but
of course, I don’t know exactly where I am. Where is
it in relation to me? Can I get the beacon in the field
of view of my sensor without searching around?”

”Suppose I make the measurement. My sensor is not
perfect either, but I know its accuracy. Will the mea-
surement give me enough information so that I can
then move to the loader?”

Before trying to answer these questions, we first need
to create a map, and place in it the initial relations
described.

2 The Stochastic Map

In this paper, uncertain spatial relationships will be
tied together in a representation called the stochastic
map. It contains estimates of the spatial relationships,
their uncertainties, and the inter-dependencies of the
estimates.

2.1 Representation

A spatial relationship will be represented by the vec-
tor of its spatial variables, x. For example, the position
and orientation of a mobile robot can be described by
its coordinates, x and y, in a two dimensional carte-
sian reference frame and by its orientation, φ, given as
a rotation about the z axis. An uncertain spatial rela-
tionship, moreover, can be represented by a probability
distribution over its spatial variables.

The complete probability distribution is generally
not available. For example, most measuring devices
provide only a nominal value of the measured rela-
tionship, and we can estimate the average error from
the sensor specifications. However, the full distribu-
tion may be unneccesary for making decisions, such as
whether the robot will be able to complete a given task
(e.g. passing through a doorway). For these reasons,
we choose to model an uncertain spatial relationship
by estimating the first two moments of its probability
distribution—the mean, x̂ and the covariance (see Fig-
ure 2). Figure 2 shows our map with only one object
located in it — the beacon. The diagonal elements
of the covariance matrix are just the variances of the
spatial variables, while the off-diagonal elements are
the covariances between the spatial variables. The in-
terpretation of the ellipse in the figure follows in the
next section.
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Figure 2: The Map with One Relation

Similarly, to model a system of n uncertain spatial
relationships, we construct the vector of all the spatial
variables, called the system state vector. As before,
we will estimate the mean of the state vector, x̂, and
the system covariance matrix, C(x). In Figure 3 the
map structure is defined recursively (described below),
providing the method for building it by adding one new
relation at at time.

x̂′ =

 x̂

x̂n

 , C(x′) =

 C(x) C(x,xn)

C(xn,x) C(xn)


Figure 3: Adding A New Object

The current system state vector is appended with xn,
the vector of spatial variables for a new uncertain
relationship being added. Likewise, the current sys-
tem covariance matrix is augmented with the covari-
ance matrix of the new vector, C(xn), and its cross-
covariance with the new vector C(x,xn), as shown.
The cross-covariance matrix is composed of a column
of sub-matrices — the cross-covariances of each of the
original relations in the state vector with the new one,
C(xi,xn). These off-diagonal sub-matrices encode the
dependencies between the estimates of the different
spatial relationships and provide the mechanism for
updating all relational estimates that depend on any
that are changed.

Thus our “map” consists of the current estimate of
the mean of the system state vector, which gives the
nominal locations of objects in the map with respect to
the world reference frame, and the associated system
covariance matrix, which gives the uncertainty of each
point in the map and the inter-dependencies of these
uncertainties.

The map can now be constructed with the initial
estimates of the means and covariances of the rela-
tions x1 and x2, as shown in Figure 3. If the given
estimates are independent of each other, the cross-
covariance matrix will be 0.

2.2 Interpretation

For some decisions based on uncertain spatial relation-
ships, we must assume a particular distribution that
fits the estimated moments. For example, a robot
might need to be able to calculate the probability that
a certain object will be in its field of view, or the prob-
ability that it will succeed in passing through a door-
way.

Given only the mean, x̂, and covariance matrix,
C(x), of a multivariate probability distribution, the
principle of maximum entropy indicates that the dis-
tribution resulting from assuming the least additional
information is the normal distribution. Furthermore if
the relationship is calculated by combining many dif-
ferent pieces of information, the central limit theorem
indicates that the resulting distribution will tend to a
normal distribution.

We will graph uncertain spatial relationships by
plotting contours of constant probability from a nor-
mal distribution with the given mean and covariance
information. These contours are concentric ellipsoids
(ellipses for two dimensions) whose parameters can be
calculated from the covariance matrix, C(x) [Nahi,
1976]. It is important to emphasize that we do not
assume that the individual uncertain spatial relation-
ships are described by normal distributions. We esti-
mate the first two central moments of their distribu-
tions, and use the normal distribution only when we
need to calculate specific probability contours.

In the figures in this paper, a line represents the ac-
tual relation between two objects (located at the end-
points). The actual object locations are known only
by the simulator and displayed for our benefit. The
robot’s information is shown by the ellipses which are
drawn centered on the estimated mean of the relation-
ship and such that they enclose a 99.9% confidence
region (about four standard deviations) for the rela-
tionships. The mean point itself is not shown.

We have defined our map, and loaded it with the
given information. In the next two sections we must
learn how to read it, and then change it, before dis-
cussing the example.

3 Reading the Map

Having seen how we represent uncertain spatial rela-
tionships by estimates of the mean and covariance of
the system state vector, we now discuss methods for
estimating the first two moments of unknown multi-
variate probability distributions. See [Papoulis, 1965]
for detailed justifications of the following topics.

3.1 Uncertain Relationships

The first two moments computed by the formulae be-
low for non-linear relationships on random variables
will be first-order estimates of the true values. To



compute the actual values requires knowledge of the
complete probability density function of the spatial
variables, which will not generally be available in our
applications. The usual approach is to approximate
the non-linear function

y = f(x)

by a Taylor series expansion about the estimated
mean, x̂, yielding:

y = f(x̂) + Fx(x− x̂) + · · · ,

where Fx is the matrix of partials, or Jacobian, of f
evaluated at x̂:

Fx
4
=

∂f(x)
∂x

(x̂)
4
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fr

∂x1

∂fr

∂x2
· · · ∂fr

∂xn


x=x̂.

This terminology is the extension of the fx terminol-
ogy from scalar calculus to vectors. The Jacobians are
always understood to be evaluated at the estimated
mean of the input variables.

Truncating the expansion for y after the linear term,
and taking the expectation produces the linear esti-
mate of the mean of y:

ŷ ≈ f(x̂). (1)

Similarly, the first-order estimate of the covariances
are:

C(y) ≈ FxC(x)FT
x ,

C(y, z) ≈ FxC(x, z), (2)
C(z,y) ≈ C(z,x)FT

x .

Of course, if the function f is linear, then Fx is a con-
stant matrix, and the first two central moments of the
multivariate distribution of y are computed exactly,
given correct central moments for x. Further, if x fol-
lows a normal distribution, then so does y.
In the remainder of this paper we consider only first
order estimates, and the symbol “≈” should read as
“linear estimate of.”

3.2 Coordinate Frame Relationships

We now consider the spatial operations which are nec-
essary to reduce serial chains of coordinate frame rela-
tionships between objects to some resultant (implicit)
relationship of interest: compounding, and reversal.
A useful composition of these operations is also de-
scribed.

Given two spatial relationships, x2 and x23, as in
Figure 1, with the second described relative to the first,

we wish to compute the resultant relationship. We
denote this binary operation by ⊕, and call it com-
pounding.

In another situation, we wish to compute x21. It
can be seen that x2 and x1 are not in the right form
for compounding. We must first invert the sense of
the vector x2 (producing x20). We denote this unary
inverse operation 	, and call it reversal.

The composition of reversal and compounding op-
erations used in computing x21 is very common, as
it gives the location of one object coordinate frame
relative to another, when both are described with a
common reference.
These three formulae are:

xik
4
= f(xij ,xjk)

4
= xij ⊕ xjk

xji
4
= g(xij)

4
= 	xij

xjk
4
= h(xij ,xik)

4
= f(g(xij),xik)

4
= 	xij ⊕ xik

Utilizing (1), the first-order estimate of the mean of
the compounding operation is:

x̂ik ≈ x̂ij ⊕ x̂jk.

Also, from (2), the first-order estimate of the covari-
ance is:

C(xik) ≈ J⊕

 C(xij) C(xij ,xjk)

C(xjk,xij) C(xjk)

JT
⊕.

where the Jacobian of the compounding operation, J⊕
is given by:

J⊕
4
=

∂(xij ⊕ xjk)
∂(xij ,xjk)

=
∂xik

∂(xij ,xjk)
=

[
J1⊕ J2⊕

]
.

The square sub–matrices, J1⊕ and J2⊕, are the left
and right halves of the compounding Jacobian.

The first two moments of the reversal function can
be estimated similarly, utilizing its Jacobian, J	. The
formulae for compounding and reversal, and their Ja-
cobians, are given for three degrees–of–freedom in Ap-
pendix A. The six degree–of–freedom formulae are
given in [Smith 1986].

The mean of the composite relationship, computed
by h(), can be estimated by application of the other
operations:

x̂jk = x̂ji ⊕ x̂ik = 	x̂ij ⊕ x̂ik

The Jacobian can be computed by chain rule as:

	J⊕
4
=

∂xjk

∂(xij ,xik)
=

∂xjk

∂(xji,xik)
∂(xji,xik)
∂(xij ,xik)

= J⊕

[
J	 0
0 I

]
=

[
J1⊕J	 J2⊕

]
.



The chain rule calculation of Jacobians applies to any
number of compositions of the basic relations, so that
long chains of relationships may be reduced recur-
sively. It may appear that we are calculating first-
order estimates of first-order estimates of ..., but ac-
tually this recursive procedure produces precisely the
same result as calculating the first-order estimate of
the composite relationship. This is in contrast to min-
max methods which make conservative estimates at
each step and thus produce very conservative estimates
of a composite relationship.

3.3 Extracting Relationships

We have now developed enough machinery to describe
the procedure for estimating the relationships between
objects which are in our map. The map contains, by
definition, estimates of the locations of objects with
respect to the world frame; these relations can be read
out of the estimated system mean vector and covari-
ance matrix directly. Other relationships are implicit,
and must be extracted, using methods developed in
the previous sections.

For any relationship on the variables in the map we
can write:

y = g(x).

where the function g() is general (not the function
described in the previous section). Conditioned on all
the evidence in the map, estimates of the mean and
covariance of the relationship are given by:

ŷ ≈ g(x̂),
C(y) ≈ GxC(x)GT

x .

4 Changing the Map

Our map represents uncertain spatial relationships
among objects referenced to a common world frame.
It should change if the underlying world itself changes.
It should also change if our knowledge changes (even
though the world is static). An example of the former
case occurs when the location of an object changes;
e.g., a mobile robot moves. An example of the latter
case occurs when a constraint is imposed on the loca-
tions of objects in the map, for example, by measuring
some of them with a sensor.

To change the map, we must change the two com-
ponents that define it — the (mean) estimate of the
system state vector, x̂, and the estimate of the system
variance matrix, C(x).

Figure 4 shows the changes in the system due to
moving objects, and the addition of constraints. A
similar description appears in Gelb [Gelb 1984] and
we adopt the same notation.

We will assume that new constraints are applied at
discrete moments, marked by states k. The update of
the estimates at state k, based on new information,

- - -

k − 1 k

sensor
update

sensor
update

dynamics
extrapolation

x̂(−)
k−1 x̂(+)

k−1 x̂(−)
k x̂(+)

k

C(x(−)
k−1) C(x(+)

k−1) C(x(−)
k ) C(x(+)

k )

Figure 4: The Changing Map

is considered to be instantaneous. The estimates, at
state k, prior to the integration of the new informa-
tion are denoted by x̂(−)

k and C(x(−)
k ), and after the

integration by x̂(+)
k and C(x(+)

k ). At these discrete
moments our knowledge is increased, and uncertainty
is reduced.

In the interval between states the system may be
changing dynamically — for instance, the robot may
be moving. When an object moves, we must define a
process to extrapolate the estimate of the state vector
and uncertainty at state k− 1, to state k to reflect the
changing relationships.

4.1 Moving Objects

In our example, only the robot moves, so the process
model need only describe its motion. A continuous
dynamics model can be developed given a particu-
lar robot, formulated as a function of time (see [Gelb,
1984]). However, if the robot only makes sensor ob-
servations at discrete times, then a discrete motion
approximation is quite adequate.

Assume the robot is represented by the Rth relation-
ship in the map. When the robot moves, it changes its
relationship, xR, with the world. The robot makes an
uncertain relative motion, yR, to reach a final world
location x′R. Thus,

x′R = xR ⊕ yR.

Only a portion of the map needs to be changed due to
the change in the robot’s location from state to state
— specifically, the Rth element of the estimated mean
of the state vector, and the Rth row and column of the
estimated variance matrix.
In Figure 5,

x̂′R ≈ x̂R ⊕ ŷR,

C(x′R) ≈ J1⊕C(xR)JT
1⊕ + J2⊕C(yR)JT

2⊕,

C(x′R,xi) ≈ J1⊕C(xR,xi).

For simplicity, the formulae presented assume indepen-
dence of the errors in the relative motion, yR, and the
current estimated robot location xR. As in the descip-
tion of Figure 3, C(x,x′R) is a column of the individual
cross-covariance matrices C(xi,x′R).



x̂′ =

 x̂′R

 , C(x′) =


C(x,x′R)

C(x′R,x) C(x′R)


Figure 5: The Moving Robot

4.2 Adding Constraints

When new information is obtained relating objects al-
ready in the map, the system state vector and variance
matrix do not increase in size; i.e., no new elements are
introduced. However, the old elements are constrained
by the new relation, and their values will be changed.

Constraints can arise in a number of ways:

• A robot measures the relationship of a known
landmark to itself (i.e., estimates of the world lo-
cations of robot and landmark already exist).

• A geometric relationship, such as colinearity,
coplanarity, etc., is given for some set of the object
location variables.

In the first example the constraint is noisy (because of
an imperfect measurement). In the second example,
the constraint could be absolute, but could also be
given with a tolerance.

There is no mathematical distinction between the
two cases; we will describe all constraints as if they
came from measurements by sensors — real sensors
or pseudo-sensors (for geometric constraints), perfect
measurement devices or imperfect.

When a constraint is introduced, there are two es-
timates of the geometric relationship in question —
our current best estimate of the relation, which can
be extracted from the map, and the new sensor infor-
mation. The two estimates can be compared (in the
same reference frame), and together should allow some
improved estimate to be formed (as by averaging, for
instance).

For each sensor, we have a sensor model that de-
scribes how the sensor maps the spatial variables in
the state vector into sensor variables. Generally, the
measurement, z, is described as a function, h, of the
state vector, corrupted by mean-zero, additive noise v.
The covariance of the noise, C(v), is given as part of
the model.

z = h(x) + v. (3)

The expected value of the sensor value and its covari-
ance are easily estimated as:

ẑ ≈ h(x̂).

C(z) ≈ HxC(x)HT
x + C(v),

where:

Hx
4
=

∂hk(x)
∂x

(
x̂(−)

k

)
The formulae describe our best estimate of the sensor’s
values under the circumstances, and the likely varia-
tion. The actual sensor values returned are usually
assumed to be conditionally independent of the state,
meaning that the noise is assumed to be independent
in each measurement, even when measuring the same
relation with the same sensor. The actual sensor val-
ues, corrupted by the noise, are the second estimate of
the relationship.

In Figure 6, an over-constrained system is shown.
We have two estimates of the same node, labeled x1

and z. In our example, x1 represents the location of
a beacon about which we have prior information, and
z represents a second estimate of the beacon location
derived from a sensor located on a mobile robot at
x2. We wish to obtain a better estimate of the loca-
tion of the robot, and perhaps the beacon as well; i.e.,
more accurate values for the vector x̂. One method is
to compute the conditional mean and covariance of x
given z by the standard statistical formulae:

x̂|z = x̂ + C(x, z)C(z)−1(z− ẑ)

C(x|z) = C(x)−C(x, z)C(z)−1C(z,x).

Using the formulae in (2), we can substitute expres-
sions in terms of the sensor function and its Jacobian
for ẑ, C(z), and C(x, z) to obtain the Kalman Filter
equations [Gelb, 1984] given below:

x̂(+)
k = x̂(−)

k + Kk

[
zk − hk(x̂(−)

k )
]
,

C(x(+)
k ) = C(x(−)

k )−KkHxC(x(−)
k ),

Kk = C(x(−)
k )HT

x

[
HxC(x(−)

k )HT
x + C(v)k

]−1

.

For linear transformations of Gaussian variables, the
matrix H is constant, and the Kalman Filter pro-
duces the optimal minimum-variance Bayesian esti-
mate, which is equal to the mean of the a posteri-
ori conditional density function of x, given the prior
statistics of x, and the statistics of the measurement
z. Since the transformations are linear, the mean and
covariances of z are exactly determined by (1) and (2).
Since the original random variables were Gaussian, so
is he result. Finally, since a Gaussian distribution is
completely defined by its first two moments, the condi-
tional mean and covariance computed define the con-
ditional density.



No non-linear estimator can produce estimates with
smaller mean-square errors. For example, if there are
no angular errors in our coordinate frame relation-
ships, then compounding is linear in the (translational)
errors. If only linear constraints are imposed, the map
will contain optimal and consistent estimates of the
frame relationships.

For linear transformations of non-Gaussian vari-
ables, the Kalman Filter is not optimal, but produces
the optimal linear estimate. The map will again be
consistent. A non-linear estimator might be found
with better performance, however.

x̂′ =

 x̂

ẑ

 , C(x′) =

 C(x) C(x, z)

C(z,x) C(z)


Figure 6: Overconstrained Relationships

For non-linear transformations, Jacobians such as H
will have to be evaluated (they are not constant matri-
ces). The given formulae then represent the Extended
Kalman Filter, a sub-optimal non-linear estimator. It
is one of the most widely used non-linear estimators
because of its similarity to the optimal linear filter, its
simplicity of implementation, and its ability to provide
accurate estimates in practice.

The error in the estimation due to the non-linearities
in h can be greatly reduced by iteration, using the Iter-
ated Extended Kalman Filter equations [Gelb, 1984].
Such iteration is necessary to maintain consistency in
the map when non-linearities become significant. Con-
vergence to the true value of x cannot be guaranteed,
in general, for the Extended Kalman Filter, although
as noted, the filter has worked well in practice on a
large number of problems, including navigation.

5 The Example

Our example is designed to illustrate a number of uses
of the information kept in the Stochastic Map for de-
cision making. An initial implementation of the tech-
niques described in this paper has been performed.
The uncertainties represented by ellipses in the illus-
trations, were originally computed by the system on
a set of sample problems with varying error magni-
tudes. This description, however, will have to remain
qualitative until a more extensive investigation can be
performed.

5.1 What if I Move?

We combine discrete robot motions by compounding
them, as shown in Figure 5. It is assumed that any
systematic biases in the robot motion have been re-
moved by calibration. The robot’s best estimate of its
location is x̂2, with error covariance C(x2) (given in
the map). Since the location of the loading area is
known very accurately in room coordinates, the robot
can compute the nominal relative motion that it would
like to make, ŷ2,load. From an internal model of its
own accuracy, the robot estimates the covariance of
its motion error as C(y2,load). If there were no errors
in the initial estimate of the robot location, and no
motion errors incurred in moving, the robot would ar-
rive with its center coincident with the center of the
loading area. When the two uncertain relations are
compounded, the first-order estimate of the mean of
the robot’s final location is also the center of the load-
ing area, but the covariance of the error has increased.

In order to compare the likely locations of the robot
with the loading zone, we must now assume something
about the probability distribution of the robot’s loca-
tion. For reasons already discussed, a multi-variate
Gaussian distribution which fits the estimated mo-
ments is assumed. Given that, we can estimate the
elliptical region of 2-D space in which the robot should
be found, with probability determined by our choice of
confidence levels—more than likely corresponding to 4
or 5 standard deviations of the estimated errors, for
relative certainty.

Figure 7: A Direct Move Might Fail

All that remains is to determine if the ellipse is com-
pletely contained in the desired region; for purposes of
illustration, Figure 7 shows that it is not. The robot
decides it cannot achieve its goal reliably by moving
directly to the load area.

5.2 Where is the Beacon?

Before moving, the robot can attempt to reduce the
uncertainty in its initial location by trying to spot the
beacon. The relative location of the beacon to the
robot is computed by 	x2 ⊕ x1. The two estimated
moments of each relation are pulled from the map, and



the moments of the result are estimated, as described
in section 3.2.

Given the estimate, an elliptical region in which the
beacon should be found with high confidence can be
computed as before; but this time the relational es-
timate, and hence the ellipse are described in robot
coordinates. The robot can compare this region with
the region swept out by the field of view of its sensor to
determine if sensing is feasible (without repositioning
the sensor, or worse, turning the robot). The result is
illustrated in Figure 8.

The robot determines that the beacon is highly
likely to be in its field of view.

Figure 8: Is the Beacon Viewable?

5.3 Should I Use the Sensor?

Even if the robot sights the beacon, will the additional
information help it estimate its location accurately
enough so that it can then move to the loader suc-
cessfully? If not, the robot should pursue a different
strategy to reduce its uncertainty.

For simplicity, we assume that the robot’s sensor
measures the relative location of the beacon in Carte-
sian coordinates. Thus the sensor function is the func-
tional composition of reversal and compounding, al-
ready described. The sensor produces a measurement
with additive, mean-zero noise v, whose covariance is
given in the sensor model as C(v). Given the informa-
tion in the map, the conditional mean and covariance
of the expected sensor value can be estimated:

z = x21 = 	x2 ⊕ x1.

ẑ = x̂21 = 	x̂2 ⊕ x̂1.

C(z) = 	J⊕

[
C(x2) C(x2,x1)

C(x1,x2) C(x1)

]
	JT

⊕ + C(v).

In the Kalman Filter Update equations described in
section 4.2, the system covariance matrix can be up-
dated without an actual sensor measurement having
been made; it depends only on C(x), C(v), and the
matrix Hx. In the example, 	J⊕ takes the place of

Hx, and is evaluated with the current values of x̂2 and
x̂1, the robot and beacon locations. The updated sys-
tem covariance matrix can be computed as if the sen-
sor were used. The reduction in the robot’s locational
uncertainty due to applying the sensor can be judged
by comparing the old value of C(x2) with the updated
value. The magnitudes of this ”updated” robot covari-
ance estimate, and C(y2,load) (from 5.1), can be used
to decide if the robot will be able to reach its goal with
the desired tolerance.

Figure 9: The Robot Senses the Beacon Again

Figure 10: Updated and Original Estimates

Figure 11: The Robot Moves Successfully

In our example, it is determined that the sensor
should be useful. Figure 9 shows the result of a sim-
ulated measurement, with the location and measure-



ment uncertainties transformed into either robot or
map coordinates, respectively. Figure 10 illustrates
the improvement in the estimations of the robot and
beacon locations following application of the Kalman
Filter Update formulae with the given measurement.
Finally, Figure 11 shows the result of compounding the
uncertain relative motion of the robot with its newly
estimated initial location. The robot achieves its goal.

6 Discussion and Conclusions

This paper presents a general method for estimating
uncertain relative spatial relationships between refer-
ence frames in a network of uncertain spatial relation-
ships. Such networks arise, for example, in industrial
robotics and navigation for mobile robots, because
the system is given spatial information in the form
of sensed relationships, prior constraints, relative mo-
tions, and so on. The methods presented in this paper
allow the efficient estimation of these uncertain spa-
tial relations and can can be used, for example, to
compute in advance whether a proposed sequence of
actions (each with known uncertainty) is likely to fail
due to too much accumulated uncertainty; whether
a proposed sensor observation will reduce the uncer-
tainty to a tolerable level; whether a sensor result is so
unlikely given its expected value and its prior probabil-
ity of failure that it should be ignored, and so on. This
paper applies state estimation theory to the problem
of estimating parameters of an entire spatial configura-
tion of objects, with the ability to transform estimates
into any frame of interest.

The estimation procedure makes a number of as-
sumptions that are normally met in practice, and can
be summarized as follows:

• Functions of the random variables are relatively
smooth about the estimated means of the vari-
ables within an interval on the order of one stan-
dard deviation. In the current context, this gen-
erally means that angular errors are “small”. In
Monte Carlo simulations[Smith, 1985], the com-
pounding formulae were used on relations with
angular errors having standard deviations as large
as 5o, gave estimates of the means and variances
to within 1% of the correct values. Wang [Wang]
analytically verified the utility of the first-order
compounding formulae as an estimator, and de-
scribed the limits of applicability.

• Estimating only two moments of the probability
density functions of the uncertain spatial relation-
ships is adequate for decision making. We be-
lieve that this is the case since we will most often
model a sensor observation by a mean and vari-
ance, and the relationships which result from com-
bining many pieces of information become rapidly
Gaussian, and thus are accurately modelled by
only two moments.

Although the examples presented in this paper have
been solely concerned with spatial information, there
is nothing in the theory that imposes this restriction.
Provided that functions are given which describe the
relationships among the components to be estimated,
those components could be forces, velocities, time in-
tervals, or other quantities in robotic and non-robotic
applications.

Appendix A: Three DOF Rela-
tions

Formulae for the full 6DOF case are given in [Smith
1986].

The formulae for the compounding operation are:

xik
4
= xij ⊕ xjk

=

 xjk cos φij − yjk sinφij + xij

xjk sinφij + yjk cos φij + yij

φij + φjk

 .

where the Jacobian for the compounding operation,
J⊕ is:

J⊕
4
=

∂(xij ⊕ xjk)
∂(xij ,xjk)

=
∂xik

∂(xij ,xjk)
=

 1 0 −(yik − yij) cos φij − sinφij 0
0 1 (xik − xij) sinφij cos φij 0
0 0 1 0 0 1

 .

The formulae for the reverse operation are:

xji
4
= 	xij

4
=

 −xij cos φij − yij sinφij

xij sinφij − yij cos φij

−φij

 .

and the Jacobian for the reversal operation, J	 is:

J	
4
=

∂xji

∂xij
=

 − cos φij − sinφij yji

sinφij − cos φij −xji

0 0 −1

 .
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